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Abstract. Recent high precision measurements on the lifetime of the metastable 6s[3/2]2 state of atomic
xenon display a difference with previous predictions by a factor of 2–3. In the present work, a system-
atic relaxation and correlation approach, which has been developed on the basis of a widely used multi-
configuration Dirac-Fock method, is applied to study the electric dipole allowed E1 and forbidden M1, E2
and M2 transitions between the 5p56s and 5p6 configurations. We systematically include the correlation
effects which arise from all the single and double excitations from the occupied {5s, 5p} shells into the
{ns, np, (n−1)d} (n = 6–10) active sets and the relaxation effects caused by change of the electron density
between the radiative initial- and final-states. This study not only reduces greatly the existing discrepancy
in the lifetime of the 6s[3/2]2 state, but also presents rather consistent results for both the lifetime of the
metastable 6s′[1/2]0 state and the oscillator strength of the 5p56s − 5p6 E1 resonant transitions.

PACS. 32.70.Cs Oscillator strengths, lifetimes, transition moments

1 Introduction

The ground state of xenon is formed by the very sta-
ble closed-shell configuration 5p6. The first four excited
states are formed by the configuration 5p56s. These ex-
cited levels are separated into two pairs by their parent
terms 5p5(2P3/2) and 5p5(2P1/2), respectively, and are
designated as 6s[3/2]2 and 6s[3/2]1 as well as 6s′[1/2]1
and 6s′[1/2]0 in the standard Jl coupling scheme [1]. The
lowest excited state 6s[3/2]2 can decay only via a magnetic
quadrupole (M2) radiation into the ground state 5p6 1S0.
The 6s′[1/2]0 state can decay to either the 6s[3/2]1 by
a magnetic dipole (M1) transition or to the 6s[3/2]2 by
an electric quadrupole (E2) radiation. The 6s[3/2]1 and
6s′[1/2]1 states can decay to the 5p6 1S0 ground state via
an electric dipole (E1) transition.

Recently, a high precision measurement performed in
a magnetic optic trap (MOT) by Walhout et al. [2] gave
a lifetime of 42.9± 3.9 s for the 6s[3/2]2 metastable state
of atomic xenon. However, the experimental lifetime dif-
fers from the previous prediction of 150 s of Small-Warren
et al. [3] by about a factor of 3. In order to explain this
big discrepancy, Indelicato et al. [4] also calculated the
lifetime using a multi-configuration Dirac-Fock (MCDF)
method. However, their theoretical result of 96 s is still
twice the experimental value of 42.9 s. Later the lifetime
of the 6s′[1/2]0 state was also measured as 0.128+0.122

−0.042 s
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by the same group of Walhout et al. [5]. But there was a
very big uncertainty in the observation. In 2001, Mishra
and Balasubramanian [6] also calculated the lifetimes of
the 6s[3/2]2 and 6s′[1/2]0 states by including a hyper-
fine quenching effect. It was found that the hyperfine
quenching effect results in a remarkable reduction of life-
times of the 6s[3/2]2 and 6s′[1/2]0 states for the isotopic
atomic xenon with odd nuclear spin, but such an effect
is absent for the atomic xenon with even nuclear spin. In
the latter case, their theoretical lifetime of 100 s for the
6s[3/2]2 state was still over twice the existing experimen-
tal value [5].

The oscillator strength of the 5p56s−5p6 E1 transition
has also been a challenge in both theory and experiment.
Although there have been many calculations and mea-
surements [7–32], some remarkable discrepancies still exist
among the different theories and experiments as well as the
theories and experiments themselves. For instance, the rel-
ativistic many-body calculation of Euripides et al. [7] gave
excellent agreement with several recent measurements by
Molino et al. [14], Anderson et al. [15] and Chan et al. [16]
for the strongest 6s[3/2]1−5p6 1S0 transition. However for
another line, i.e. the 6s′[1/2]1 − 5p6 1S0 transition, they
did not provide any available new result.

From a theoretical point of view, the difficulty in
treating these spectra may arise from the following three
points: (i) due to a large splitting between the two par-
ent terms 5p5(2P1/2) and 5p5(2P3/2), the LS coupling
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condition is broken completely in all the excited states.
As a result, the 5p5(2P3/2)5d levels lie very close to the
5p5(2P1/2)6s. This leads to strong configuration interac-
tion among these levels; (ii) the probability of a radia-
tion transition involving a final state with a stable closed-
shell 5p6 and an initial state with two open sub-shells,
might be influenced seriously by the obvious differences
between the initial and final orbital sets; (iii) relativistic
effect and quantum electrodynamic (QED) effects should
also be very important in such a heavy atom. In order to
acquire satisfactory theoretical results for these spectra,
systematic consideration of all of these effects is necessary.

Recently, on the basis of the widely used MCDF
method [33] a new computational procedure which can
treat relaxation and correlation effects systematically has
been developed by us [34,35]. Using this procedure, we
have successfully studied several complex atomic systems
with open p and d shells [36–38]. In this present work, the
same method is further used to study the electric dipole
allowed E1 and forbidden M1, E2 and M2 transitions be-
tween the 5p56s and 5p6 configurations of xenon. In Sec-
tion 2, a short description of the theoretical method and
computational procedure is given. The calculated lifetimes
and oscillator strengths as well as some possible compar-
isons with different experiments and calculations are pre-
sented in Section 3. Finally, a brief summary is given in
Section 4.

2 Theoretical method and computational
procedures

The multiconfiguration Dirac-Fock (MCDF) method and
the corresponding programs which are used for calculat-
ing the wavefunctions and transition probabilities have
been described in detail [33–35]. Therefore, we will only
give a brief account here of the MCDF model and the
treatment of relaxation and correlation effects for many–
electron atoms.

2.1 Calculation of energies and transition probabilities

In the MCDF method, the atomic state wavefunctions are
taken as a linear combination of CSF of the same total
angular momentum J and parity P ,

|ψα(PJM)〉 =
nc∑

r=1

cr(α)|γrPJM〉, (1)

where nc is the number of CSF and cr(α) are the mix-
ing coefficients in that basis. For all practical computa-
tions, the (proper) choice of the many–electron CSF basis
finally determines to which extent electron–electron corre-
lations are taken into account. A systematically enlarged
basis of such a CSF is often used to distinguish between
different computational models within the MCDF frame-
work [33–35].

The energies of the atomic levels with symmetry
JP are obtained by diagonalizing the Dirac–Coulomb
Hamiltonian matrix in the given basis. Further relativis-
tic corrections to the level structure can be considered by
utilizing the Dirac–Coulomb–Breit matrix or by adding
some suitable (one–electron) estimates from QED. Breit
interaction, which is the Coulomb interaction between two
electrons due to exchange of a single transverse photon,
is treated in the low-frequency limit (ωij → 0) as a per-
turbation, which can correct for the total energy and con-
figuration mixing coefficient, but can not correct for the
radial wavefunctions because it is not included in the self-
consistent process. In addition, the most important quan-
tum electrodynamic (QED) effects, i.e. the self-energy and
the vacuum polarization, have also been included in the
calculation of the energies as done in [35–38].

The transition probability for a radiative decay from
initial state i to final state f can be calculated by

Afi =
2π

2ji + 1

∑

Mi,Mf

∑

L

|M (L)
fi |2, (2)

where one has to average over the initial states of level i
and sum over the final states of f . An additional summa-
tion runs, in principle, over all the multipole components L
of the electro–magnetic field but, since higher–order com-
ponents of the field are strongly suppressed, only the low-
est order Lmin, which is allowed, need usually to be taken
into account. The transition matrix elements

M
(L)
fi = 〈ψf (PfJfMf )|O(L)|ψi(PiJiMi)〉

=
∑

r,s

cr(f)cs(i)〈γrPfJfMf |O(L)|γsPiJiMi〉 (3)

are reduced according to the transition matrix within the
CSF basis. Different computational procedures have been
developed to calculate this matrix for symmetry–adapted
functions which are built from two incomplete orthogonal
orbital sets. In our programs, the matrix elements are fur-
ther represented in terms of Slater determinants as well
as Löwdin’s expressions [40]

〈γrPfJfMf |O(L)|γsPiJiMi〉 =
∑

p,q

∑

k,l

BrpBsq〈ϕk|O(L)|ϕl〉Dpq(kl). (4)

In this representation, Dpq(kl) = det {dpq(kl)} denotes
the determinant of the (one–electron) overlap matrix ele-
ments dkl = 〈ϕk|ϕl〉 from which the pth raw and qth col-
umn has been deleted. The one–particle matrix elements
for the interaction with the radiation field

〈ϕk|O(L)|ϕl〉 =
(

(2jl + 1)ω
πc

)1/2

× (−1)jl−1/2

(
jk L jl
1
2 0 − 1

2

)
Mkl (5)

can be reduced further by the Wigner–Eckart theorem and
written in terms of the radial integrals Mkl which need to
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be distinguished for the different multipoles (E1, M1, E2,
...) and gauges of the radiation field. Usually two differ-
ent gauges, namely the Babushkin and Coulomb gauge are
considered which, in the non–relativistic limit, correspond
to the length and velocity gauges. They may help obtain
insight into the accuracy of the calculation, although the
gauge invariance of the results is itself a necessary but not
sufficient condition to draw conclusions about the (phys-
ical) convergence of the results. An efficient program for
the computation of relaxed–orbital transition probabilities
has been developed recently by us within the framework of
the Ratip package [34,35] which now supports wavefunc-
tion expansion of several hundred thousand determinants
even using standard PCs.

2.2 Consideration of relaxation and correlation effects

The relaxation of the electron density refers to the change
of the bound-state electron orbits due to the emission or
absorption of a photon. To include this effect in the wave
functions of the initial and final states in a straightfor-
ward manner, a separated MCDF calculation is neces-
sary for the atomic levels of interest. Such an independent
computation of the wave functions, however, yields two
sets of electron orbits which are not quite orthogonal to
each other. To incorporate the effects of relaxation in the
computation of transition amplitudes, the overlap of the
initial- and final-state orbits has to be treated properly
in the evaluation of the many-electron matrix elements as
outlined in the previous subsection. Of course, this evalu-
ation is also relative to how the computations ought to be
organized: they are often only feasible, if the levels are ar-
ranged in several groups according to their symmetry, i.e.
their total angular momenta and parities. In the present
study, we divided the levels into four groups: one for the
5p6 1S0 ground state, one for the two J = 0 excited states
of the 5p56s+ 5p55d, one for the four J = 1 levels of the
5p56s + 5p55d and one for the J = 2 level of the 5p56s.
For these groups, separate computations were carried out
through all the steps in our series of approximations (see
below), using the (extended) optimal level model of the
Grasp92 package [33]. To display, for instance, the in-
fluence of the relaxation effects on the spectroscopically
occupied orbits, Table 1 shows the mean orbital radius
〈r〉 of the outmost 5s and 5p orbits corresponding to the
5s25p6 1S0 ground state and the J = 1 excited states. As
seen from Table 1, the mean orbital radii in the excited
levels with J = 1 are always smaller, when compared with
the orbits in the ground state. For the 5p1/2 and 5p3/2 or-
bits, the differences are in the range of 5%, compared to
the corresponding ground–state orbits. Thus, it is obvious
that these relaxation effects in the electron density cannot
be neglected, in particular, if the decay probabilities are
considered for weak lines.

In order to consider the influence of electron–electron
correlation, a series of steps have been carried out for
the four level groups defined above, using an active space
method. In this method, one starts from one or a few

Table 1. Mean orbital radii (in atomic unit) of the occupied
orbits 5s and 5p in the 1S0 ground state and the 6s′[1/2]1 and
6s[3/2]1 excited states in Xe I.

Ground state Excited states
Orbits 5p6 1S0 6s′[1/2]1 + 6s[3/2]1

5s 1.9011 1.8557
5p1/2 2.2382 2.1475
5p3/2 2.3479 2.2389

reference configurations chosen on the basis of the spec-
troscopic occupied orbits. Then, the list of CSF of a given
symmetry is generated by exciting electrons from these
reference configurations within an active set of orbits. In
the present study, the configurations 5p6 and 5p56s+5p55d
are used as references, for the even and odd parity states
respectively. All the possible single (S) and double (D)
excitations from the {5s, 5p} occupied shells up to the
active sets {ns, np, (n − 1)d} (n = 6–10) are considered.
The number of CSF used in the ASF expansions for the
different level groups is listed in Table 2. Due to the fact
that the number of the CSF grows so rapidly with increase
of the size of the active sets, we are not able to include
the excitations with n larger than 10 and l larger than 3
in the present active sets. But as we will see in Section 3,
this approximation can explain most important correla-
tion effects for the present considered states and provide
an excellent convergence result.

3 Results and discussions

Using the computational procedure from above, the elec-
tric dipole allowed E1 and forbidden M1, E2 and M2 tran-
sitions between the 5p56s and 5p6 configurations of xenon
are calculated and analyzed systematically. Below, we
present and discuss the lifetimes of the metastable 6s[3/2]2
and 6s′[1/2]0 levels as well as the oscillator strengths of
the 6s[3/2]1− 5p6 1S0 and 6s′[1/2]1− 5p6 1S0 transitions.

3.1 Lifetime of the metastable state 6s[3/2]2

The lowest-excited 6s[3/2]2 level can only decay into the
ground state 5p6 1S0 through a M2 transition. Since this
magnetic quadruple line is a very weak transition [2–4,6],
the influence of relaxation and correlation is expected to
be very important. In this subsection, the different corre-
lation contributions to the binding energy and main com-
ponents of the wavefunction expansions of the initial and
final states are studied systematically. By increasing the
size of the active sets, the convergence of the lifetime of the
6s[3/2]2 state is analyzed for the two cases with and with-
out relaxation effects. Finally, the lifetime of the 6s[3/2]2
state is presented by applying an active set with n ≤ 10.

Figure 1 displays the relative contribution of the cor-
relation effects on the independence of the 5p6 1S0 and
6s[3/2]2 level energies on the size of the active space. In
this figure, the relative correlation contribution refers to
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Table 2. Number of the CSF in the expansion of ASF and number of the levels as used in the optimization of the wavefunctions
of different symmetry. For the active sets with n ≥ 9, only the 5p56s reference configuration has been used in the generation of
the CSF lists.

Number of CSF in {ns, np, (n − 1)d}
Configurations J Number of level 6 7 8 9 10

5p6 0 1 53 238 403 701 1081
5p56s + 5p55d 0 2 301 1690 4243 5428 6961

1 4 781 4424 11126 14128 18010
2 1 963 5562 14059 17579 22131

Fig. 1. Relative correlation energies of the 5p6 1S0 and
6s[3/2]2 levels as a function of active set as used in the cal-
culations. The relative correlation energy refers to the energy
difference between the results of active sets n0 and n0 − 1.

the difference of the binding energies as obtained from
the active sets with n ≤ n0 and n0 − 1. As seen from Fig-
ure 1, the incorporation of excitations with n ≤ 6...8 play
a very important role for the level energies for both, the
5p6 1S0 and 6s[3/2]2 states. By increasing the size of the
active sets, the convergence is faster for the ground state
5p6 1S0 than that of the excited state 6s[3/2]2. By apply-
ing an active set with n ≤ 10, we obtain an error with an
accuracy of 0.9% for the excitation energy.

Besides the binding energy, the wavefunction expan-
sion coefficient is another quantity which is directly as-
sociated with the correlation effect. It is found that in
the present calculations, there is only one dominant com-
ponent for both the radiative initial state 6s[3/2]2 and
final state 5p6 1S0, while the other components are rather
small (usually less than 0.009). In Figure 2, we further
show the convergence behaviour of the main components
corresponding to the two states 6s[3/2]2 and 5p6 1S0, re-
spectively. As seen from Figure 2, the influences from the
active sets having higher n are more important for the
excited state 6s[3/2]2 than for the ground state 5p6 1S0.
This is in accordance with the convergence behaviour of
the correlation energy as mentioned above.

In Figure 3, the change of the theoretical lifetime as a
function of the size of the active sets in the cases with and
without relaxation effects is shown. As seen from Figure 3,
in the case where the relaxation effect is included, the
theoretical lifetime becomes rapidly small with increas-
ing size of the active sets, especially in the lower active
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Fig. 2. Main components of the 5p6 1S0 and 6s[3/2]2 levels as
a function of the active set as used in the calculations.
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Fig. 3. Effects of relaxation and correlation on the lifetime of
the metastable 6s[3/2]2 level in Xe I.

sets n = 6–8. As expected, the contributions from the
active sets n ≥ 9 are small, only reduce the lifetime by
2.86 s. However, in the case without relaxation, namely
neglecting all overlaps by assuming orthogonality among
the wavefunctions with the same symmetry, the theoreti-
cal lifetime changes only very little with increasing size of
the active sets. Figure 3 reveals clearly the importance of
considering relaxation and correlation effects in an unified
way in a systematic calculation of transition probability.
In fact, the inclusion of relaxation effects can dramatically
improve the calculation of transition probabilities. It also
has the further advantage that one is not required to apply
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Table 3. Theoretical and experimental excitation energies and lifetimes of the 6s[3/2]2 level in Xe I.

Method and author Energy (cm−1) Lifetime (s)
Theory This work 67644 58.2

Mishra et al. [6] 100
Indelicato et al. [4] 96
Small-Warren et al. [3] 150

Experiment Walhout et al. [2] 67068 42.9 ± 3.9

Table 4. Theoretical and experimental excitation energies and lifetimes of the 6s′[1/2]0 level in Xe I.

Method and author Energy (cm−1) Lifetime (s)
Theory This work 76682 0.111

Mishra et al. [6] 0.084
Small-Warren et al. [3] 0.078

Experiment Walhout et al. [5] 76197 0.128+0.122
−0.042

such large wavefunction expansions in order to achieve a
given accuracy.

In Table 3, the theoretical lifetime of the 6s[3/2]2 state
is presented in the active set n = 10. For comparison, the
available measurement and previous predictions are also
given. As seen from Table 3, the present calculation is
quite close to the recent experiment [2] compared to the
previous predictions [3,4,6].

We nonetheless have to mention that there is still a
big disagreement of 36% between the present calculation
and the experiment. From a theoretical point of view, the
disagreement may arise from the following reasons: (i) al-
though lots of important correlations have been included
in the present calculation, there are still some correlations,
such as the core-core correlations from the 4l sub-shells
and the valence correlations from the more higher active
sets n and l, which are not included here; (ii) the contri-
butions from the Breit interaction and QED corrections
are not included completely, they are treated only as per-
turbations in the present calculations for energies.

3.2 Lifetime of the metastable state 6s′[1/2]0

The 6s′[1/2]0 metastable state can decay to the excited
state 6s[3/2]1 by a M1 transition, also to the 6s[3/2]2 by
a E2 transition. But due to the contribution from the M1
transition, this contribution is far larger than that of the
E2 transition. Therefore the lifetime of the metastable
state 6s′[1/2]0 is determined mainly by the M1 decay.
In Table 4, the calculated lifetime of the 6s′[1/2]0 state
is listed. For comparison, the available measurement and
previous calculations are also given.

As seen from Table 4, the present calculated lifetime
of the 6s′[1/2]0 state is in good agreement with the exper-
imental spontaneous emission lifetime [5], but it is longer
by 30% compared to the previous predictions [3,6]. The
total experimental lifetime of this level is not only given by
the spontaneous emission from the 6s′[1/2]0−6s[3/2]1 M1
transition, but also depends on a blackbody-induced deex-
citation to the 6p[1/2]1 state as indicated in reference [5].

Therefore the experimental uncertainty is too big for a
more accurate comparison with the present calculation.

A detailed study on the influence of correlation effects
with respect to the lifetime is also carried out. It is found
that the theoretical lifetime is changed by only 0.6% by
inclusion of the active sets from n = 6 to n = 8. Therefore,
the contributions from the higher active sets n = 9 and
n = 10 should be very small, and are not considered in
the final calculation.

In addition, it is worth pointing out that a direct con-
sideration of the configuration interaction between the
6s′[1/2]0 and 5d[3/2]0 levels is very important. The ex-
perimental energies of these two levels are 76197 cm−1

and 79772 cm−1, respectively. They lie very close to each
other. As found in the calculation, the mixing coefficient
between these two levels reaches about 0.23 in the active
set n = 8. This mixture results in a great enlargement
of the theoretical lifetime. For example, in the case only
including the 6s′[1/2]0 level in the calculation, the the-
oretical lifetime is only 0.086 s in the active set n = 8.
When we treat those two levels together, the theoretical
lifetime becomes 0.111 s in the same active set.

3.3 Oscillator strengths of the 5p5 6s – 5p6 E1
transition

The electric dipole allowed 5p56s−5p6 transition produces
two separate single lines 6s[3/2]1−5p6 1S0 and 6s′[1/2]1−
5p6 1S0.

In order to present the results as accurately as possi-
ble, a further study on the convergence of the oscillator
strengths (or transition probabilities) of these two lines
has also been carried out. It is found that the oscilla-
tor strengths are not too sensitive to the correlations.
As a result, the calculated oscillator strengths change
very little with the systematic increase of the size of the
active sets. For example, the calculated result for the
6s[3/2]1−5p6 1S0 line is 0.303/0.303 (refers to the ratio of
the results in length and velocity gauges) in the active set
n = 6, and only reduces to 0.267/0.263 in the active set
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Table 5. Comparison of the theoretical and experimental oscillator strengths of the 5p56s − 5p6 E1 transitions in Xe I. gfL

and gfV refer to the oscillator strengths in length and velocity gauges, respectively.

6s[3/2]1 − 5p6 1S0 6s′[1/2]1 − 5p6 1S0

Method and author gfL/gfV gfL/gfV

Theory This work 0.271/0.263 0.158/0.154
Euripides et al. [7] 0.249/0.256
Aymar et al. [8] 0.282/0.294 0.306/0.270
Geiger [9] 0.28 0.365
Aymar et al. [10] 0.273/0.177 0.235/0.118
Kim et al. [11] 0.212 0.189
Gruzdev [12] 0.28 0.25
Dowand Knox[13] 0.194 0.147

Experiment Molino Garcia et al. [14] 0.260 ± 0.010 0.170 ± 0.007
Anderson et al. [15] 0.264 ± 0.016
Chan et al. [16] 0.273 ± 0.014 0.186 ± 0.009
Suzuki et al. [17] 0.222 ± 0.027 0.158 ± 0.019
Ferrell et al. [18] 0.260 ± 0.05 0.19 ± 0.04
Salamero et al. [19] 0.226 ± 0.026
Bideau-Mehu et al. [20] 0.268 ± 0.008
Smith et al. [21] 0.244 ± 0.015
Wieme et al. [22] 0.226 ± 0.025
Matthias et al. [23] 0.263 ± 0.007 0.229 ± 0.007
Delage et al. [24] 0.183 ± 0.073 0.169 ± 0.068
Wieme et al. [25] 0.213 ± 0.020 0.180 ± 0.040
Geiger [26] 0.26 ± 0.05 0.19 ± 0.03
Wilkinson [27] 0.260 ± 0.020 0.270 ± 0.020
Chashchina et al. [28] 0.28 ± 0.05
Anderson [29] 0.256 ± 0.008 0.238 ± 0.015

Semi-empirical Chen et al. [30] 0.202 ± 0.030 0.147 ± 0.022
simulation Haffad et al. [31] 0.215 ± 0.010 0.173 ± 0.033

Bessis et al. [32] 0.208 ± 0.027 0.141 ± 0.019

n = 8. Furthermore, the contributions from the higher ac-
tive sets with n ≥ 9 are even smaller, and are not included
in the present calculations.

In Table 5, the calculated oscillator strengths and tran-
sition probabilities are listed in the active set n = 8. For
comparison, the previous calculations [7–13], experiments
[14–29], and several semi-empirical simulations [30–32] are
also shown in Table 5.

As seen from Table 5, for the 6s[3/2]1 − 5p6 1S0

line, the present calculation is in very good agreement
with the newest relativistic many-body calculation of
Euripides et al. [7] and most of the experimental data
[14–16,18,20,21,26–29]; In the case of the 6s′[1/2]1 −
5p6 1S0 line, the present result is also rather close to the
calculation of Dow and Knox [13] and the experiments
[14,16–18,24–26] as well as the extrapolated results of the
general oscillator strengths (GOS) [30–32].

4 Conclusions

In summary, the electric dipole allowed E1 and forbidden
M1, E2 and M2 transitions between the 5p56s and 5p6

configurations have been studied systematically using a
large scale MCDF method. With this investigation, we not
only reduce greatly the existing discrepancy in the lifetime
of the metastable 6s[3/2]2 state but also present rather

consistent results for both the lifetime of the metastable
6s′[1/2]0 state and the oscillator strengths of the 5p56s−
5p6 E1 resonant transitions.

From the present study, several important conclusions
can be drawn which will be helpful also for the analy-
sis of other complex atomic systems: (i) the two reference
configurations 5p56s + 5p55d play an important role for
improving the convergence of the present calculation as
used successfully by O’Malley and Beck et al. [42,43] in
calculating the lifetimes of xenon–like Cs and La; (ii) the
inclusion of at least two additional angular orbits and two
higher excitation layers in constructing an active set is nec-
essary in order to obtain a converged result as pointed out
before in several previous studies [36–38]; (iii) the incor-
poration of both the correlation and relaxation effects is
found to improve dramatically the transition probabilities,
especially for the weak lines such as the 6s[3/2]2−5p6(1S0)
M2 transition in the present study. Therefore, a system-
atic inclusion of these effects is very important for the
calculation of complex atomic systems.

Addendum

Before this paper will be printed, we learned of two more
recent works for the lifetime of the metastable 6s[3/2]2
state of atomic xenon [44,45]. One of them connects the
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experimental observation of Lefers et al. [44], and the
other is the relativistic configuration interaction (RCI)
calculation of Beck [45]. The newest experimental result is
in quite good agreement with the previous observation of
Walhout et al. [2]. The RCI calculation of Beck [45] yields
a result of 48.3 s by including the single and double ex-
citations to the {ns, np, nd, nf, ng} virtual orbits, which
is also in good agreement with the two existing experi-
ments. But a similar calculation by adding the {nf} and
{ng} virtual orbits directly in our {ns, np, (n−1)d} corre-
lation models seems unable to yield such result. In order
to explain the difference between the present calculation
and that of Beck, some further calculations are currently
underway.
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